Маркировка конденсаторов. Кодовая и цветовая маркировака конденсаторов Конденсаторы группы тке

Нередко для оценки зависимости e диэлектриков, а также емкости конденсаторов от температуры указывается температурный коэффициент диэлектрической проницаемости:

и температурный коэффициент емкости:

(4)

Связь между коэффициентами может быть получена при учете влияния температуры на геометрические размеры конденсатора. Рассмотрим конденсатор с обкладками площадью S и диэлектриком с проницаемостью e и толщиной l .

, (5)

a l – температурный коэффициент линейного расширения материала диэлектрика. Рассматривая конденсатор с квадратными обкладками со стороной a , можно показать, что если температурный коэффициент линейного расширения металлических обкладок a lмо , то a S =2a lмо . Для конденсатора при свободном расширении материала обкладок и конденсатора получим

ТКЕ=a e +2a lmo -a l (6)

Если электроды имеют тот же коэффициент линейного расширения, что и диэлектрик, на который, например, нанесены тонкие и прочно соединенные с ним металлические слои, служащие электродами, получим

ТКЕ=a e +a l (7)

Если зависимость емкости от температуры носит линейный характер, то величину ТКЕ (К -1) можно вычислить по формуле

(8)

где С 1 , С 2 - емкости при температурах T 1 и T 2 соответственно.

Если требуется определить значение температурного коэффициента емкости ТКЕ для конденсатора, то для этого по экспериментальным данным строится график C=f(Т) , по которому с помощью графического дифференцирования определяется ТКЕ (рисунок 1.3). С этой целью через точку А , соответствующую температуре Т A , для которой требуется определить ТКЕ , проводится касательная. Затем строится треугольник (произвольных размеров) АВК .

Отношение вертикального катета ВК к горизонтальному АВ (с учетом масштабов) дает производную

(9)

Разделив полученную величину на С А получим ТКЕ для температуры Т A .

Следует помнить, что в общем случае производная не равнозначна тангенсу угла наклона касательной к оси абсцисс g , так как тангенс всякого угла – величина безразмерная, а производная в рассматриваемом случае имеет размерность пФ/К.

Как неотъемлемые элементы всех без исключения электрических схем конденсаторы отличаются большим разнообразием вариантов конструктивного исполнения. Они выпускаются многими производителями по всему миру с применением различных технологий. Как следствие, маркировка имеет множество вариантов в соответствии с внутренними стандартами производителя, что делает попытки расшифровывать обозначения трудной задачей.

Зачем нужна маркировка

Задачей маркировки стоит соответствие каждого конкретного элемента определенным значениям рабочей характеристики. Маркировка конденсаторов включает в себя следующее:

  • собственно, емкость – основная характеристика;
  • максимально допустимое значение напряжения;
  • температурный коэффициент емкости;
  • допустимое отклонение емкости от номинального значения;
  • полярность;
  • год выпуска.

Максимальное значение напряжения важно тем, что при превышении его значения происходят необратимые изменения в элементе, вплоть до его разрушения.

Температурный коэффициент емкости (ТКЕ) характеризует изменение ёмкости при колебаниях температуры окружающей среды или корпуса элемента. Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра.

Допустимое отклонение означает точность, с которой возможно отклонение номинальной емкости конденсаторов.

Полярность подключения в основном характерна для электролитических конденсаторов. Несоблюдение полярности включения, в лучшем случае, приведет к тому, что реальная ёмкость элемента будет сильно занижена, а в реальности элемент практически мгновенно выйдет из строя из-за механического разрушения в результате перегрева или электрического пробоя.

Наибольшее отличие в принципах маркировки конденсаторов наблюдается в радиоэлементах, выпущенных за рубежом и предприятиями на постсоветском пространстве. Все предприятия бывшего СССР и те, что продолжают работать сейчас, кодируют выпускаемую продукцию по единому стандарту с небольшими отличиями.

Маркировка отечественных конденсаторов

Многие отечественные радиоэлементы отличаются максимально полной маркировкой, при чтении которой можно почерпнуть большинство возможных характеристик элемента.

Емкость

На первом месте стоит основная характеристика – электрическая емкость. Она имеет буквенно-цифровое обозначение. Для букв применяются следующие символы латинского, греческого или русского алфавита:

  • p или П – пикофарада, 1 pF = 10-3 nF = 10-6 μF = 10-9 mF = 10-12 F;
  • n или Н – нанофарада, 1 nF = 10-3 μF = 10-6 mF = 10-9 F;
  • μ или М – микрофарада, 1 μF = 10-3 mF = 10-6 F;
  • m или И – миллифарада, 1 mF = 10-3 F;
  • F или Ф – фарада.

Буква, обозначающая величину, ставится на месте запятой в дробном обозначении. Например:

  • 2n2 = 2.2 нанофарад или 2200 пикофарад;
  • 68n = 68 нанофарад или 0,068 микрофарад;
  • 680n или μ68 = 0.68 микрофарад.

Обратите внимание! Обозначение емкости в миллифарадах встречается крайне редко, а такая величина как фарада является очень большой и также не имеет особого распространения.

Допустимое отклонение

Значения ёмкостей, указанные на корпусе, не всегда соответствует реальному значению. Это отклонение характеризует точность изготовления детали и определения его номинала. Величина разброса параметров может быть от тысячных долей процента у прецизионных деталей до десятков процентов у электролитических конденсаторов, предназначенных для фильтрации пульсаций в цепях питания, где точные цифры не имеют особого значения.

Величина допустимого отклонения обозначается буквами латинского алфавита или русскими буквами у радиодеталей старых годов выпуска.

Температурный коэффициент емкости

Маркировка ТКЕ довольно сложна, а поскольку данная величина критична в основном для малогабаритных элементов времязадающих цепей, то возможна как цветная кодировка, так и использование буквенных обозначений или комбинации обоих типов. Таблица возможных вариантов значений встречается в любом справочнике по отечественным радиокомпонентам.

Многие керамические конденсаторы, как и плёночные, имеют определенные нюансы в маркировке ТКЕ. Данные случаи оговариваются ГОСТами на соответствующие элементы.

Номинальное напряжение

Напряжение, при котором сохраняется работоспособность элемента с сохранением характеристик в заданных пределах, называется номинальным. Обычно обозначается верхний порог номинального напряжения, превышать который запрещается ввиду возможного выхода элемента из строя.

В зависимости от габаритов, возможны варианты как цифрового, так и буквенного обозначения номинального напряжения. Если позволяют габариты корпуса, то напряжение до 800 В обозначается в единицах вольт с символом V (или В для старых конденсаторов) или без него. Более высокие значения наносятся на корпус в виде единиц киловольт с обозначением символами kV или кВ.

Малогабаритные конденсаторы имеют кодированное буквенное обозначение напряжения, для чего используются буквы латинского алфавита, каждая из которых соответствует определенной величине напряжения.

Год и месяц выпуска

Дата производства также имеет буквенное обозначение. Каждому году соответствует буква латинского алфавита. Месяцы с января по сентябрь обозначаются цифрой, соответственно, от 1 до 9, октябрю соответствует 0, ноябрю буква N, декабрю – D.

Обратите внимание! Кодированное обозначение года выпуска одинаково с другими радиоэлементами.

Расположение маркировки на корпусе

Маркировка керамических конденсаторов в первой строке на корпусе имеет значение емкости. В той же строке без каких-либо разделительных знаков или, если не позволяют габариты, под обозначением емкости наносится значение допуска.

Подобным же методом наносится маркировка пленочных конденсаторов.

Дальнейшее расположение элементов регламентируется ГОСТ или ТУ на каждый конкретный тип элементов.

Цветовая маркировка отечественных радиоэлементов

С распространением линий автоматического монтажа нашла применение цветовая маркировка конденсаторов. Наибольшее распространение получила четырехцветная маркировка при помощи цветных полос.

Первые две полосы означают номинальную емкость в пикофарадах и множитель, третья полоса – допустимое отклонение, четвертая – номинальное напряжение. Например, на корпусе имеется желтая, голубая, зеленая и фиолетовая полосы. Следовательно, элемент имеет такие характеристики: емкость – 22*106 пикофарад (22 μF), допустимое отклонение от номинала – ±5%, номинальное напряжение – 50 В.

Первая цветная полоса (в данном случае, которая имеет желтый цвет) делается более широкой или располагается ближе к одному из выводов. Также следует ориентироваться по цвету крайних полос. Такой цвет, как серебряный, золотой и черный, не может быть первым, поскольку обозначает множитель или ТКЕ.

Маркировка конденсаторов импортного производства

Для обозначения импортных, а в последние годы и отечественных радиоэлементов приняты рекомендации стандарта IEC, согласно которому на корпусе радиоэлемента наносится кодовая маркировка из трех цифр. Первые две цифры кода обозначают емкость в пикофарадах, третья цифра – число нулей. Например, цифры 476 означают емкость 47000000 pF (47 μF). Если емкость меньше 1 pF, то первая цифра 0, а символ R ставится вместо запятой. Например, 0R5 – 0,5 pF.

Для высокоточных деталей применяется четырехзнаковая кодировка, где первые три знака определяют емкость, а четвертый – количество нулей. Обозначение допуска, напряжения и прочих характеристик определяется фирмой-производителем.

Цветовая маркировка импортных конденсаторов

Цветовое обозначение конденсаторов строится по тому же принципу, что и у резисторов. Первые две полосы означают емкость в пикофарадах, третья полоса – количество нулей, четвертая – допустимое отклонение, пятая – номинальное напряжение. Полос может быть и меньше, если нет необходимости в обозначении напряжения или допуска. Первая полоса делается шире или у одного из выводов. Синие цвета отсутствуют. Вместо них используются голубые полосы.

Обратите внимание! Две соседние полосы одинакового цвета могут не иметь между собой промежутка, сливаясь в широкую полосу.

Маркировка SMD компонентов

SMD компоненты для поверхностного монтажа имеют очень малые размеры, поэтому для них разработана сокращенная буквенно-цифровая кодировка. Буква означает значение емкости в пикофарадах, цифра – множитель в виде степени десяти, например G4 – 1.8*105 пикофарад (180 nF). Если спереди две буквы, то первая означает производителя компонента или рабочее напряжение.

Электролитические конденсаторы SMD могут иметь на корпусе значение основного параметра в виде десятичной дроби, где вместо точки может быть вставлен символ μ (напряжение обозначается буквой V (5V5 – 5.5 вольт) или могут иметь кодированное значение, зависящее от производителя. Положительный вывод обозначается полосой на корпусе.

Маркировка конденсаторов имеет большое число вариантов. Особенно этим отличаются импортные конденсаторы. Часто можно встретить малогабаритные элементы, которые вовсе не имеют каких-либо обозначений. Определить параметры можно только непосредственным измерением или, глядя на обозначение конденсаторов на электрической схеме. Произведенные разными фирмами радиоэлементы могут иметь схожие обозначения, но различные параметры. Здесь расшифровка обозначений должна базироваться на том, какой производитель выпускает преимущественное количество подобных элементов в конкретном устройстве.

Видео

Они бывают полярные и неполярные. Различия их в том, что одни применяются в цепях постоянного напряжения, а другие в цепях переменного. Возможно, применение постоянных конденсаторов в цепях переменного напряжения при включении их последовательно одноименными полюсами, но они при этом показывают не лучшие параметры.

Конденсаторы неполярные

Неполярные, так же как и резисторы бывают постоянные, переменные и подстроечные.

Подстроечные конденсаторы применяются для настройки резонансных цепей в приемо-передающей аппаратуре.

Рис. 1. Конденсаторы КПК

Тип КПК. Представляют из себя посеребренные обкладки и керамический изолятор. Имеют емкость в несколько десятков пикофарад. Встретить можно в любых приемниках, радиолах и телевизионных модуляторах. Подстроечные конденсаторы также обозначаются буквами КТ. Затем следует цифра, указывающая тип диэлектрика:

1 - вакуумные; 2 - воздушные; 3 - газонаполненные; 4 - твердый диэлектрик; 5 - жидкий диэлектрик. Например, обозначение КП2 означает конденсатор переменной емкости с воздушным диэлектриком, а обозначение КТ4 - подстроечный конденсатор с твердым диэлектриком.




Рис. 2 Современные подстроечные чип-конденсаторы

Для настройки радиоприемников на нужную частоту применяют конденсаторы переменной емкости (КПЕ)


Рис. 3 Конденсаторы КПЕ

Их можно встретить только в приемо-передающей аппаратуре

1- КПЕ с воздушным диэлектриком, найти можно в любом радиоприемнике 60- 80-х годов.
2 - переменный конденсатор для УКВ блоков с верньером
3 - переменный конденсатор, применяется в приемной технике 90-х годов и по сей день, можно встретить в любом музыкальном центре, магнитофоне, кассетном плеере с приемником. В основном китайского производства.

Типов постоянных конденсаторов существует великое множество, в рамках этой статьи невозможно описать все их разнообразие, опишу лишь те, что в бытовой аппаратуре чаще всего встречаются.


Рис. 4 Конденсатор КСО

Конденсаторы КСО - Конденсатор слюдяной опресованный. Диэлектрик - слюда, обкладки - алюминиевое напыление. Залит в корпус из коричневого компаунда. Встречаются в аппаратуре 30-70-х годов, емкость не превышает несколько десятков нанофарад, на корпусе указывается в пикофарадах нанофарадах и микрофарадах. Благодаря применению слюды в качестве диэлектрика, эти конденсаторы способны работать на высоких частотах, поскольку имеют малые потери и имеют большое сопротивление утечки около 10^10 Ом.


Рис. 5 Конденсаторы КТК

Конденсаторы КТК - Конденсатор трубчатый керамический В качестве диэлектрика используется керамическая трубка, обкладки из серебра. Широко применялись в колебательных контурах ламповой аппаратуры с 40-х по начало восьмидесятых годов. Цвет конденсатора означает ТКЕ(температурный коэффициент изменения емкости). Рядом с емкостью, как правило прописывается группа ТКЕ, которая имеет буквенное или цифровое обозначение (Таблица1.) Как видно из таблицы, самые термостабильные - голубые и серые. Вообще этот тип очень хорош для ВЧ техники.

Таблица 1. Маркировка ТКЕ керамических конденсаторов

При настройке приемников часто приходится подбирать конденсаторы гетеродинных и входных контуров. Если в приемнике используются конденсаторы КТК, то подбор емкости конденсаторов в этих контурах можно упростить. Для этого на корпус конденсатора рядом с выводом наматывают плотно несколько витков провода ПЭЛ 0,3 и один из концов этой спиральки подпаивают к выводу конденсаторов. Раздвигая и сдвигая витки спиральки, можно в небольших пределах регулировать емкость конденсатора. Может случиться, что, подключив конец спиральки к одному из выводов конденсатора, добиться изменения емкости не удается. В этом случае спираль следует подпаять к другому выводу.


Рис. 6 Керамические конденсаторы. Вверху советские, внизу импортные.

Керамические конденсаторы, их обычно называют «красные флажки», также иногда встречается название «глиняные». Эти конденсаторы широко применяются в высокочастотных цепях. Обычно эти конденсаторы не котируются и редко применяются любителями, поскольку конденсаторы одного и того же типа могут быть изготовлены из разной керамики и имеют различные характеристики. В керамических конденсаторах выигрывая в размерах, проигрывают в термостабильности и линейности. На корпусе обозначается емкость и ТКЕ (таблица 2.)

Таблица 2

Достаточно взглянуть на допустимое изменение емкости у конденсаторов с ТКЕ Н90 емкость может изменяться почти в два раза! Для многих целей это не приемлемо, но все же не стоит отвергать этот тип, при небольшом перепаде температур и не жестких требованиях ими вполне можно пользоваться. Применяя параллельное включение конденсаторов с разными знаками ТКЕ можно получить достаточно высокую стабильность результирующей емкости. Встретить их можно в любой аппаратуре, особенно любят китайцы в своих поделках.

Имеют на корпусе обозначение емкости в пикофарадах или нанофарадах, импортные маркируются числовой кодировкой. Первые две цифры указывают на значение емкости в пикофарадах (пФ), последняя - количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть "9". При емкостях меньше 1.0 пФ первая цифра "0". Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 - 0.5 пФ. Несколько примеров собраны в таблице:

Маркировка цифробуквенная:
22р-22 пикофарада
2n2- 2.2 нанофарада
n10 - 100 пикофарад

Хотелось бы особо отметить керамические конденсаторы типа КМ, применяются в промышленном оборудовании и военных аппаратах, имеют высокую стабильность, найти весьма сложно, потому как содержат редкоземельные металлы, и если вы нашли плату, где применяется данный тип конденсаторов, то в 70 % случаев их вырезали до вас).

В последнее десятилетие очень часто стали применяться радиодетали для поверхностного монтажа, вот основные типоразмеры корпусов для керамических чип-конденсаторов

Конденсаторы МБМ – металлобумажный конденсатор(рис 6.), применялся как правило в ламповой звукоусилительной аппаратуре. Сейчас весьма ценятся некоторыми аудиофилами. Также к данному типу относятся конденсаторы К42У-2 военной приемки, но их иногда можно встретить и в бытовой вппаратуре.


Рис. 7 Конденсатор МБМ и К42У-2

Следует отметить отдельно такие типы конденсаторов как МБГО и МБГЧ(рис.8), любителями зачастую используются как пусковые конденсаторы для запуска электродвигателей. Как пример, мой запас на двигатель на 7кВт (рис 9.). Рассчитаны на высокое напряжение от 160 до 1000в, что им дает много различных применений в быту и промышленности. Следует помнить, что для использования в домашней сети, нужно брать конденсаторы, с рабочим напряжением не менее 350в. Найти такие конденсаторы можно в старых бытовых стиральных машинах, различных устройствах с электродвигателями и в промышленных установках. Часто применяются в качестве фильтров для акустических систем, имея для этого неплохие параметры.


Рис. 8. МБГО, МБГЧ


Рис. 9

Кроме обозначения, указывающего конструктивные особенности (КСО - конденсатор слюдяной спрессованный, КТК -керамический трубчатый и т. д.), существует система обозначений конденсаторов постоянной емкости, состоящая из ряда элементов: на первом месте стоит буква К, на втором месте -двухзначное число, первая цифра которого характеризует тип диэлектрика, а вторая - особенности диэлектрика или эксплуатации, затем через дефис ставится порядковый номер разработки.

Например, обозначение К73-17 означает пленочный полиэтилен-терефталатный конденсатор с 17 порядковым номером разработки.


Рис. 10. Различные типы конденсаторов



Рис. 11. Конденсатор типа К73-15

Основные типы конденсаторов, в скобочках импортные аналоги.

К10 -Керамический, низковольтный (Upa6<1600B)
К50 -Электролитический, фольговый, Алюминиевый
К15 -Керамический, высоковольтный (Upa6>1600B)
К51 -Электролитический, фольговый, танталовый,ниобиевый и др.
К20 -Кварцевый
К52 -Электролитический, объемно-пористый
К21 -Стеклянный
К53 -Оксидо-полупроводниковый
К22 -Стеклокерамический
К54 -Оксидно-металлический
К23 -Стеклоэмалевый
К60- С воздушным диэлектриком
К31- Слюдяной малой мощности (Mica)
К61 -Вакуумный
К32 -Слюдяной большой мощности
К71 -Пленочный полистирольный(KS или FKS)
К40 -Бумажный низковольтный(ираб<2 kB) с фольговыми обкладками
К72 -Пленочный фторопластовый (TFT)
К73 -Пленочный полиэтилентереф-талатный (KT ,TFM, TFF или FKT)
К41 -Бумажный высоковольт-ный(ираб>2 kB) с фольговыми обкладками
К75 -Пленочный комбинированный
К76 –Лакопленочный (MKL)
К42 -Бумажный с металлизированными Обкладками (MP)
К77 -Пленочный, Поликарбонатный (KC, MKC или FKC)
К78 – Пленочный полипропилен (KP, MKP или FKP)

Конденсаторы с пленочным диэлектриком в простонародье называют слюдяными, различные применяемые диэлектрики дают хорошие показатели ТКЕ. В качестве обкладок в пленочных конденсаторах используют либо алюминиевую фольгу, либо напыленные на диэлектрическую пленку тонкие слои алюминия или цинка. Они имеют достаточно стабильные параметры и применяются для любых целей (не для всех типов). Встречаются в бытовой аппаратуре повсеместно. Корпус таких конденсаторов может быть как металлическим, так и пластмассовым и иметь цилиндрическую или прямоугольную форму(рис. 10.) Импортные слюдяные конденсаторы(рис.12)


Рис. 12. Импортные слюдяные конденсаторы

На конденсаторах указывается номинальное отклонение от емкости, может быть показано в процентах или иметь буквенный код. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости конденсатора, вот так 22nK, 220nM, 470nJ.

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости конденсаторов. Допуск в %

Буквенное обозначение

Важным является значение допустимого рабочего напряжения конденсатора, указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая маркировка). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения конденсаторов.

Номинальное напряжение, В

Буква обозначения

Поклонники Николы Тесла имеют частую потребность в высоковольтных конденсаторах, вот некоторые которые можно встретить, в основном в телевизорах в блоках строчной развертки.


Рис. 13. Высоковольтные конденсаторы

Конденсаторы полярные

К полярным конденсаторам относятся все электролитические, которые бывают:

Алюминиевые электролитические конденсаторы обладают высокой емкостью, низкой стоимостью и доступностью. Такие конденсаторы широко применяются в радиоприборостроении, но имеют существенный недостаток. Со временем электролит внутри конденсатора высыхает и они теряют емкость. Вместе с емкостью увеличивается эквивалентное последовательное сопротивление и такие конденсаторы уже не справляются с поставленными задачами. Это как правило служит причиной неисправности многих бытовых приборов. Использование б/у конденсаторов не желательно, но все же если возникло желание их использовать, нужно тщательно измерить емкость и esr, чтоб потом не искать причину неработоспособности прибора. Перечислять типы алюминиевых конденсаторов не вижу смысла, поскольку особых отличий в них нет, кроме геометрических параметров. Конденсаторы бывают радиальные(с выводами с одного торца цилиндра)и аксиальные(с выводами с противоположных торцов), встречаются конденсаторы с одним выводом, в качестве второго-используется корпус с резьбовым наконечником(он же и является крепежом), такие конденсаторы можно встретить в старой ламповой радиотелевизионной технике. Также стоит заметить, что на материнских платах компьютеров, в импульсных блоках питания часто встречаются конденсаторы с низким эквивалентным сопротивлением, так называемые LOW ESR, так вот они имеют улучшенные параметры и заменяются только на подобные, иначе при первом включении будет взрыв.


Рис. 14. Электролитические конденсаторы. Снизу - для поверхностного монтажа.

Танталовые конденсаторы, лучше чем алюминиевые, за счет использования более дорогой технологии. В них применяется сухой электролит, поэтому им не свойственно «высыхание» алюминиевых конденсаторов. Кроме того, танталовые конденсаторы имеют более низкое активное сопротивление на высоких частотах (100 кГц), что важно при использовании в импульсных источниках питания. Недостатком танталовых конденсаторов является относительно большое уменьшение емкости с увеличением частоты и повышенная чувствительность к переполюсовке и перегрузкам. К сожалению, этот тип конденсаторов характеризуется невысокими значениями емкости (как правило, не более 100 мкФ). Высокая чувствительность к напряжению заставляет разработчиков делать запас по напряжению Увеличенным в два и более раз.


Рис. 14. Танталовые конденсаторы. Первые три отечественные, предпоследний импортный, последний импортный для поверхностного монтажа.

Основные размеры танталовых чип-конденсаторов:

К одной из разновидностей конденсаторов (на самом деле это полупроводники и с обычными конденсаторами имеют мало общего, но упомянуть их все же имеет смысл) относятся варикапы. Это особый вид диодо-конденсатора, который изменяет свою емкость в зависимости от приложенного напряжения. Применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др.


Рис. 15 Варикапы кв106б, кв102

Также весьма интересны «суперконденсаторы» или ионисторы. При малых размерах они обладают колоссальной емкостью и часто используются для питания микросхем памяти, и иногда ими подменяют электрохимические батареи. Ионисторы могут работать и в буфере с батареями в целях защиты их от резких скачков тока нагрузки: при низком токе нагрузки батарея подзаряжает суперконденсатор, и если ток резко возрастет, ионистор отдаст запасенную энергию, чем уменьшит нагрузку на батарею. При таком варианте использования его размещают либо непосредственно возле аккумуляторной батареи, либо внутри ее корпуса. Их можно встретить в ноутбуках в качестве элемента питания для CMOS.

К недостаткам можно отнести:
Удельная энергия меньше, чем у аккумуляторов (5-12 Вт·ч/кг при 200 Вт·ч/кг для литий-ионных аккумуляторов).
Напряжение зависит от степени заряженности.
Возможность выгорания внутренних контактов при коротком замыкании.
Большое внутреннее сопротивление по сравнению с традиционными конденсаторами (10...100 Ом у ионистора 1 Ф × 5,5 В).
Значительно больший, по сравнению с аккумуляторами, саморазряд: порядка 1 мкА у ионистора 2 Ф × 2,5 В.


Рис. 16. Ионисторы

  • Перевод
  • Tutorial

Вступление: я был озадачен.

Несколько лет назад, после более чем 25 лет работы с этими вещами, я узнал кое-что новое о керамических конденсаторах. Работая над драйвером светодиодной лампы я обнаружил, что постоянная времени RC-цепочки в моей схеме не сильно смахивает на расчётную.

Предположив, что на плату были впаяны не те компоненты, я измерил сопротивление двух резисторов составлявших делитель напряжения - они были весьма точны. Тогда был выпаян конденсатор - он так же был великолепен. Просто чтобы убедиться, я взял новые резисторы и конденсатор, измерил их, и впаял обратно. После этого я включил схему, проверил основные показатели, и ожидал увидеть что моя проблема с RC-цепочкой решена… Если бы.

Я проверял схему в её естественной среде: в корпусе, который в свою очередь сам по себе был зачехлён чтобы имитировать кожух потолочного светильника. Температура компонентов в некоторых местах достигала более чем 100ºC. Для уверенности, и чтобы освежить память я перечитал даташит на используемые конденсаторы. Так началось моё переосмысление керамических конденсаторов.

Справочная информация об основных типах керамических конденсаторов.

Для тех кто этого не помнит (как практически все), в таблице 1 указана маркировка основных типов конденсаторов и её значение. Эта таблица описывает конденсаторы второго и третьего класса . Не вдаваясь глубоко в подробности, конденсаторы первого класса обычно сделаны на диэлектрике типа C0G (NP0).

Таблица 1.

Нижняя рабочая температура Верхняя рабочая температура Изменение ёмкости в диапазоне (макс.)
Символ Температура (ºC) Символ Температура (ºC) Символ Изменение (%)
Z +10 2 +45 A ±1.0
Y -30 4 +65 B ±1.5
X -55 5 +85 C ±2.2
6 +105 D ±3.3
7 +125 E ±4.7
8 +150 F ±7.5
9 +200 P ±10
R ±15
S ±22
T +22, -33
U +22, -56
V +22, -82

Из описанных выше на моём жизненном пути чаще всего мне попадались конденсаторы типа X5R, X7R и Y5V. Я никогда не использовал конденсаторы типа Y5V из-за их экстремально высокой чувствительности к внешним воздействиям.

Когда производитель конденсаторов разрабатывает новый продукт, он подбирает диэлектрик так, чтобы ёмкость конденсатора изменялась не более определённых пределов в определённом температурном диапазоне. Конденсаторы X7R которые я использую не должны изменять свою ёмкость более чем на ±15% (третий символ) при изменении температуры от -55ºC (первый символ) до +125ºC (второй символ). Так что, либо мне попалась плохая партия, либо что-то ещё происходит в моей схеме.

Не все X7R созданы одинаковыми.

Так как изменение постоянной времени моей RC-цепочки было куда больше, чем это могло быть объяснено температурным коэффициентом ёмкости, мне пришлось копать глубже. Глядя на то, насколько уплыла ёмкость моего конденсатора от приложенного к нему напряжения я был очень удивлён. Результат был очень далёк от того номинала, который был впаян. Я брал конденсатор на 16В для работы в цепи 12В. Даташит говорил, что мои 4,7мкФ превращаются в 1,5мкФ в таких условиях. Это объясняло мою проблему.

Даташит также говорил, что если только увеличить типоразмер с 0805 до 1206, то результирующая ёмкость в тех же условиях будет уже 3,4мкФ! Этот момент требовал более пристального изучения.

Я нашёл, что сайты Murata® и TDK® имеют классные инструменты для построения графиков изменения ёмкости конденсаторов в зависимости от различных условий. Я прогнал через них керамические конденсаторы на 4,7мкФ для разных типоразмеров и номинальных напряжений. На рисунке 1 показаны графики построенные Murata. Были взяты конденсаторы X5R и X7R типоразмеров от 0603 до 1812 на напряжение от 6,3 до 25В.

Рисунок 1. Изменение ёмкости в зависимости от приложенного напряжения для выбранных конденсаторов.

Обратите внимание, что во-первых, при увеличении типоразмера уменьшается изменение ёмкости в зависимости от приложенного напряжения, и наоборот.

Второй интересный момент состоит в том, что в отличии от типа диэлектрика и типоразмера, номинальное напряжение похоже ни на что не влияет. Я ожидал бы, что конденсатор на 25В под напряжением 12В меньше изменит свою ёмкость, чем конденсатор на 16В под тем же напряжением. Глядя на график для X5R типоразмера 1206 мы видим, что конденсатор на 6,3В на самом деле ведёт себя лучше, чем его родня на большее номинальное напряжение.

Если взять более широкий ряд конденсаторов, то мы увидим, что это поведение характерно для всех керамических конденсаторов в целом.

Третье наблюдение состоит в том, что X7R при том же типоразмере имеет меньшую чувствительность к изменениям напряжения, чем X5R. Не знаю, насколько универсально это правило, но в моём случае это так.

Используя данные графиков, составим таблицу 2 , показывающую насколько уменьшится ёмкость конденсаторов X7R при 12В.

Таблица 2. Уменьшение ёмкости конденсаторов X7R разных типоразмеров при напряжении 12В.

Мы видим устойчивое улучшение ситуации по мере роста размера корпуса пока мы не достигнем типоразмера 1210. Дальнейшее увеличение корпуса уже не имеет смысла.

В моём случае я выбрал наименьший возможный типоразмер компонентов, поскольку этот параметр был критичен для моего проекта. В своём невежестве я полагал что любой конденсатор X7R будет так же хорошо работать, как другой с тем же диэлектриком - и был неправ. Чтобы RC-цепочка заработала правильно я должен был взять конденсатор того же номинала, но в большем корпусе.

Выбор правильного конденсатора

Я очень не хотел использовать конденсатор типоразмера 1210. К счастью, я имел возможность увеличить сопротивление резисторов в пять раз, уменьшив при этом ёмкость до 1мкФ. Графики на рисунке 2 показывают поведение различных X7R конденсаторов 1мкФ на 16В в сравнении с их собратьями X7R 4,7мкФ на 16В.

Рисунок 2. Поведение различных конденсаторов на 1мкФ и 4,7мкФ.

Конденсатор 0603 1мкФ ведёт себя так же, как 0805 4,7мкФ. Вместе взятые 0805 и 1206 на 1мкФ чувствуют себя лучше, чем 4,7мкФ типоразмера 1210. Используя конденсатор 1мкФ в корпусе 0805 я мог сохранить требования к размерам компонентов, получив при этом в рабочем режиме 85% от исходной ёмкости, а не 30%, как было ранее.

Но это ещё не всё. Я был изрядно озадачен, ибо считал что все конденсаторы X7R должны иметь сходные коэффициенты изменения ёмкости от напряжения, поскольку все выполены на одном и том же диэлектрике - а именно X7R. Я связался с коллегой - специалистом по керамическим конденсаторам 1 . Он пояснил, что есть много материалов, которые квалифицируются как «X7R». На самом деле, любой материал который позволяет компоненту функционировать в температурном диапазоне от -55ºC до +125ºC с изменением характеристик не более чем на ±15% можно назвать «X7R». Так же он сказал, что нет каких-либо спецификаций на коэффициент изменения ёмкости от напряжения ни для X7R, ни для каких-либо других типов.

Это очень важный момент, и я его повторю. Производитель может называть конденсатор X7R (или X5R, или еще как-нибудь) до тех пор, пока он соответствует допускам по температурному коэффициенту ёмкости. Вне зависимости от того, насколько плох его коэффициент по напряжению.

Для инженера-разработчика этот факт только освежает старую шутку - «любой опытный инженер знает: читай даташит!»

Производители выпускают всё более миниатюрные компоненты, и вынуждены искать компромиссные материалы. Для того чтобы обеспечить необходимые ёмкостно-габаритные показатели, им приходится ухудшать коэффициенты по напряжению. Конечно, более авторитетные производители делают все возможное, чтобы свести к минимуму неблагоприятные последствия этого компромисса.

А как насчёт типа Y5V, который я сразу отбросил? Для контрольного в голову, давайте рассмотрим обычный конденсатор Y5V. Я не буду выделять какого-то конкретного производителя этих конденсаторов - все примерно одинаковы. Выберем 4,7мкФ на 6,3В в корпусе 0603, и посмотрим его параметры при температуре +85ºC и напряжении 5В. Типовая ёмкость на 92,3% ниже номинала, или 0,33мкФ. Это так. Приложив 5В к этому конденсатору мы получаем падение ёмкости в 14 раз по сравнению с номиналом.

При температуре +85ºC и напряжении 0В ёмкость уменьшается на 68,14%, с 4,7мкФ до 1,5мкФ. Можно предположить, что приложив 5В мы получим дальнейшее уменьшение ёмкости - от 0,33мкФ до 0,11мкФ. К счастью, эти эффекты не объединяются. Уменьшение ёмкости под напряжением 5В при комнатной температуре куда хуже, чем при +85ºC.

Для ясности, в данном случае при напряжении 0В ёмкость падает от 4,7мкФ до 1,5мкФ при +85ºC, в то время как при напряжении 5В ёмкость конденсатора увеличивается от 0,33мкФ при комнатной температуре, до 0,39мкФ при +85ºC. Это должно убедить вас действительно тщательно проверять все спецификации тех компонентов, которые вы используете.

Вывод

В результате этого урока я уже не просто указываю типы X7R или X5R коллегам или поставщикам. Вместо этого я указываю конкретные партии конкретных поставщиков, которые я сам проверил. Я также предупреждаю клиентов о том, чтобы они перепроверяли спецификации при рассмотрении альтернативных поставщиков для производства, чтобы гарантировать что они не столкнутся с этими проблемами.

Главный вывод из всей этой истории, как вы наверное догадались, это: «читайте даташиты!». Всегда. Без исключений. Запросите дополнительные данные, если даташит не содержит достаточной информации. Помните, что обозначения керамических конденсаторов X7V, Y5V и т.д. совершенно ничего не говорят о их коэффициентах по напряжению. Инженеры должны перепроверять данные чтобы знать, реально знать о том, как используемые конденсаторы будут вести себя в реальных условиях. В общем, имейте в виду, в нашей безумной гонке за меньшими и меньшими габаритами это становится всё более важным моментом каждый день.

Об авторе

Марк Фортунато провёл большую часть жизни пытаясь сделать так, чтобы эти противные электроны оказались в нужное время в нужном месте. Он работал над различными вещами - от систем распознавания речи и микроволновой аппаратуры, до светодиодных ламп (тех, которые регулируются правильно, заметьте!). Он провёл последние 16 лет помогая клиентам приручить их аналоговые схемы. Г-н Фортунато сейчас является ведущим специалистом подразделения коммуникационных и автомобильных решений Maxim Integrated. Когда он не пасёт электроны, Марк любит тренировать молодёжь, читать публицистику, смотреть как его младший сын играет в лакросс, а старший сын играет музыку. В целом, он стремится жить в гармонии. Марк очень сожалеет, что больше не встретится с Джимом Уильямсом или Бобом Пизом.

Сноски

1 Автор хотел бы поблагодарить Криса Буркетта, инженера по применению из TDK за его объяснения «что здесь, чёрт возьми, происходит».

Murata является зарегистрированной торговой маркой компании Murata Manufacturing Co., Ltd.

TDK является зарегистрированным знаком обслуживания и зарегистрированной торговой маркой корпорации TDK.

P.S. По просьбам трудящихся - сравнительное фото конденсаторов различных типоразмеров. Шаг сетки 5мм.

1. Что же такое "ТК"?

"ТК" - это сокращение от "Температурный Коэффициент" . Это свойство радиодеталей изменять свои характеристики в зависимости от температуры. Возникает он оттого, что материалы, из которых делаются радиодетали, при изменении температуры расширяются, сжимаются, и с ними происходят другие странные вещи, о которых физики лучше знают.


2. Что происходит, когда мы забываем про "ТК"?

Многие котята не знают или просто забывают про "ТК". А иногда происходит всё гораздо проще, например, нужен конденсатор какой-нибудь ёмкости, а нужного ТКЕ нет или он не известен. Часто торгаши вообще не знают (или не хотят знать, что гораздо вероятнее), чем они торгуют. Вот и приходится впаивать в конструкцию то, что удалось добыть.

А этот параметр очень важный. Если его не принимать во внимание, то при изменении температуры (просто окружающего воздуха или даже от нагрева аппаратуры во время её работы), характеристики детали с неучтённым ТК могут измениться настолько, что аппаратура станет работать плохо или вообще перестанет работать. Но самое интересное, что как только температура опять станет "нормальной", аппаратура опять начинает работать как ни в чём не бывало. И сколько сил уйдёт на то, что бы отыскать эту "мерцающую неисправность" - а виноват во всём "ТК".


3. Какие "ТК" бывают и в чём они измеряются.

Бывают они такие:

  • ТКС - температурный коэффициент сопротивления - у резисторов;
  • ТКЕ - температурный коэффициент ёмкости - конденсаторов;
  • ТКИ - температурный коэффициент индуктивности - катушек индуктивности;
  • ТКН - температурный коэффициент напряжения - стабилитронов (стабилизаторов);
  • ТКЧ - температурный коэффициент частоты - кварцевых (пьезоэлектрических) резонаторов и фильтров;
  • ТКШ - температурный коэффициент шума -есть практически у всех.

Могут и другие встретиться, но эти главные, практически всегда присутствуют.
Измеряются они в относительных единицах, которые показывают, насколько и куда изменяется данная характеристика радиодетали при изменении температуры на 1°. Это могут быть проценты на градус (‰/°), промилле на градус (‰/°) или миллионные доли на градус (ppm/°). Для ТКШ это могут быть микровольты или нановольты на градус (мкВ/° или нВ/°).

Чтобы было совсем ясно:
  • % - процент - это одна сотая (10-2, 0,01 или 1/100) часть какой-то величины;
  • ‰ - промилле - это одна тысячная (10-3, 0,001 или 1/1000) часть какой-то величины;
  • ppm (по-русски: млн-1 ) - это одна миллионная (10-6, 0,000001 или 1/1000000) часть какой-то величины.

Иногда от температуры характеристики радиодеталей так хитро меняются, что для них специальные графики рисуют или сложные формулы пишут.


4. А теперь поговорим о "ТК" подробнее:


ТКС - температурный коэффициент сопротивления


Резисторы делают из разных материалов. Самые простые из них проволочные. Температурная зависимость сопротивления у них линейная, самый маленький ТКС из них имеют резисторы сделанные из константана (ТКС < 10-5) и манганина (ТКС < 2,5x10-5), поэтому их используют в измерительной технике.

Очень дешёвые резисторы углеродистые, типа С1-4 или CF. Но ТКС у них довольно большой: от +350 до минус 2500 ppm/°. Поэтому они в основном и применяются в бытовой аппаратуре, которая в комнатных условиях работает.

Металлизированные и металлоплёночные резисторы, типа С2-23, С2-33 (МЛТ, МТ старые) или MF. ТКС у них средний: от 15 до 500 ppm/°, максимум до 1200 ppm/°. Подходят для большинства применений в широком диапазоне температур.

Самые дорогие - прецизионные, типа С2-29В или RN. ТКС у них самый маленький: от 5 до 300 ppm/°. Их и применяют в измерительной аппаратуре или в ответственных местах обычной аппаратуры, где важна стабильность сопротивления при изменении температуры, например в RC - фильтрах.

В отечественных резисторах группа ТКС обозначается буквой, которую, к сожалению, указывают только на заводской упаковке. Конкретные обозначения и величины ТКС можно узнать, заглянув в справочники или в ТУ (технические условия по-нашему или ДатаШиты по-ихнему). Вот только не каждому они доступны.


Внимание! Сейчас среди импортных резисторов (как правило, неизвестного происхождения) встречается подмена понятия "Допуск номинала" - т.е. точности, с которой изготовлен резистор на заводе. В понятие "Допуск" в этом случае закладывается огромный ТКС. Имеется в виду, что сопротивление данного резистора не выйдет за пределы, к примеру, ±10% при изменении температуры. Этот якобы "Допуск" и обозначается на резисторе. Товарищи, будьте бдительны!

Существует класс резисторов, где наоборот важен большой ТКС. Это терморезисторы или термисторы и термометры-сопротивления. Терморезисторы или термисторы (иногда встречается "позистор" - терморезистор с положительным ТКС) очень широко применяются в радиоэлектронной аппаратуре в различных целях, например: защита мощных транзисторов, термостабилизация каких-либо частей схемы и т.д. Термометры-сопротивления, как правило, делаются из медной или даже платиновой проволоки и служат для точного измерения температуры в промышленности.


ТКЕ - температурный коэффициент ёмкости


ТКЕ конденсатора очень сильно зависит от материала диэлектрика между обкладками. Ведь малейшее температурное изменение толщины диэлектрика, вызывает очень большое изменение ёмкости конденсатора.

Наиболее подвержены влиянию температуры керамические конденсаторы . Так как полностью победить ТКЕ не удаётся, (а иногда, наоборот, клин клином вышибают: например, в LC-контуре, у катушки ТКИ положительный, тогда конденсатор с отрицательным ТКЕ ставят, чтобы частота настройки контура от температуры не уходила), у керамических конденсаторов очень много всяких ТКЕ имеется. ТКЕ у керамических конденсаторов настолько важен, что его на корпусе конденсатора каким-либо способом практически всегда обозначают.

Поэтому про них мы поговорим подробнее:

Отечественная система обозначений ТКЕ (в том числе старая и очень старая)


Группа ТКЕ

Номинальное значение ТКЕ

Буква

Цветовое обозначение

Старое цветовое обозначение

корпус

метка

+210 ppm/ °C

(Синий)

(Чёрная)

П100 (П120)

+100 ppm/ °C (+120 ppm/ °C)

Красный + фиолетовый

Синий

+60 ppm/ °C

Синий (серый)

Чёрная (красная)

+33 ppm/ °C

Серый

Серый

0 ppm/ °C

Чёрный

Голубой

Чёрная

-33 ppm/ °C

Коричневый

Голубой

Коричневая

-47 ppm/ °C

Голубой + красный

Голубой (голубой)


(голубая)

-75 ppm/ °C

Красный

Голубой

Красная

-150 ppm/ °C

Оранжевый

Красный

Оранжевая

-220 ppm/ °C

Жёлтый

Красный

Жёлтая

-330 ppm/ °C

Зелёный

Красный

Зелёная

-470 ppm/ °C

Голубой

Красный

Синяя

М750 (М700)

-750 ppm/ °C (‑700 ppm/ °C)

Фиолетовый

Красный

М1500 (М1300)

-1500 ppm/ °C (‑1300 ppm/ °C)

Оранжевый + оранжевый

Зелёный

-2200 ppm/ °C

Жёлтый + оранжевый

Зелёный

Жёлтая (серая)

-3300 ppm/ °C

Зелёный

Зелёная

Оранжевый + чёрный

Оранжевый

Чёрная

Оранжевый + красный

Оранжевый

Красная

Оранжевый + зелёный

Оранжевый

Зелёная

Оранжевый + голубой

Оранжевый

Синяя

Оранжевый + фиолетовый

Оранжевый

— (оранжевая)

Оранжевый + белый

Оранжевый

Белый


Примечание: там, где для цветового обозначения ТКЕ требуется 2 цвета, то одним из них может быть цвет корпуса.

Группы ТКЕ, обозначенные буквами "П" (плюс) и "М" (минус) имеют линейную зависимость ёмкости от температуры. Группа МП0 самая стойкая - никакое изменение температуры на ёмкость конденсатора не влияет. А вот группы ТКЕ, буквой "Н" (нелинейные) обозначенные, имеют очень хитрую зависимость ёмкости от температуры, поэтому их лучше на картинке посмотреть:



Картинка эта для примера нарисована, у разных типов конденсаторов эти "Н" и по другому могут кривиться. Главное в том, что ёмкость этих конденсаторов при изменении температуры не изменится больше, чем процентов с буквой "Н" написано.

Конденсаторы с группами ТКЕ П100 (П120), П33, М47, М75, т.е. с малыми значениями ТКЕ называют ещё термостабильными. Группа ТКЕ МП0 как уже раньше было сказано, самая термостабильная. Конденсаторы с группами ТКЕ М750, М1500 (М1300), т.е с большими отрицательными значениями ТКЕ называют ещё термокомпенсирующими (их и ставят в LC-контура для стабильности).

У буржуинов своя система обозначений, но она очень на нашу похожа. Вместо буквы "М" у них латинская буква "N", вместо "П" - "P". Группа МП0 у них NP0 или C0G обозначается. А вместо буквы "Н" у них целая куча всяких обозначений: Y5x, X5x, Z5x (x - обозначает какую-то из букв: F, P, S, U, V); X7R. Эти обозначения наиболее часто встречаются, но разные фирмы ещё и "фирменные" обозначения ТКЕ используют. Тут нам только ДатаШиты (справочные листы) фирменные помогут. Чтобы нам попроще было, примерное соответствие наших и буржуинских обозначений такое:

  • вместо Н10 можно ставить X7R;
  • вместо Н20, Н30, Н50, Н70, Н90 можно ставить Y5V или Z5V;
  • вместо П33, МП0, М33 можно ставить NP0 (C0G);
  • вместо П60, П100, М47, М1500 можно ставить X7R, NP0 (C0G).
Но в каждом случае, конечно, думать надо: "Семь раз отмерь - один раз отрежь" - пословица №1, "Доверяй, но проверяй!" - пословица №2.

А вот у полипропиленовых конденсаторов (серия К78) ТКЕ довольно большой: минус 500 ppm/ °C.

Вот тут ещё раз о бдительности: продавцы в кучу К73 и К78 сваливают, мол по размерам примерно одинаковые, да и цвет похож (синий или зелёный обычно). Кстати китайские конденсаторы, которые как аналоги К73-17 продают, чаще всего всё-таки аналогами К78 являются. Конденсаторы-то разные! Кто фильтры или генератор для НЧ делал, тот знает, как частота настройки уплывает от температуры.

У остальных видов конденсаторов ТКЕ, как правило, не нормируется.
При ремонте аппаратуры, надо (если есть такая возможность) со схемой сверятся. Обычно, когда ТКЕ важен, он обязательно указан. А если что сам изобретаешь - тут уж хозяин-барин, как сделаешь, так и работать будет.


ТКИ - температурный коэффициент индуктивности


От повышения температуры предметы расширяются. Соответственно изменяются размеры катушки. Поэтому у катушек индуктивности положительный ТКИ. Для катушек заводского изготовления он иногда нормируется, а вот с самодельными беда. Если катушка в резонансном контуре стоит, надо правильно ей в пару конденсатор подобрать. Вот тут то нам и пригодятся конденсаторы с разным ТКЕ.


ТКН - температурный коэффициент напряжения (стабилизации)


Очень важен, когда мы источник питания для какого-нибудь прибора делаем. Да и просто для аппаратуры, которая длительное время работать должна, да ещё в разных температурных условиях.
Для примера: стабилитроны Д818 - у них буква в "хвосте" обозначения как раз ТКН указывает.

ТКЧ - температурный коэффициент частоты


Кварцевые резонаторы и фильтры также выпускаются с различными ТКЧ. Это хорошо видно, например, на китайских часах (я не говорю о тех, которые от сети питаются - это вообще фатальный случай). Одни почему-то идут довольно точно, а другие, похожие, просто работают по принципу - угадай, который час.

В измерительных приборах (например, частотомерах) и аппаратуре связи за ТКЧ кварцев очень внимательно следят, иначе частотомер неизвестно что показывать будет, а сигнал передатчика потеряется на просторах мирового эфира. Для этого кварцы в специальный термостат даже помещают.

ТКЧ для кварцев иногда входит в обозначение их типа, но чаще он указан в их паспорте (или на упаковке), которые, к сожалению, весьма нелегко увидеть. Тогда очень простой совет - чем больше цифр (нулей) после запятой в обозначении частоты кварца на его корпусе (или настройки фильтра), тем ТКЧ лучше и, следовательно, данный кварц стабильнее.


ТКШ - температурный коэффициент шума


Все электронные приборы шумят. Шум происходит оттого, что имеются свободные электроны (заряды), которые состоят в Броуновском движении и постоянно митингуют. И, чем выше температура, тем митинг становится всё шумнее. В результате они начинают довольно сильно мешать основному уличному движению (полезным сигналам).

В результате мы рискуем потерять полезный сигнал и получить вместо него один шум. Вот и принимают меры по борьбе с этим шумом. Например, в маломощных усилительных транзисторах (для антенных усилителей, для входных усилительных каскадов) и в операционных усилителях шум призывают к порядку, т.е. нормируют.